Deep Learning Principles

Memahami prinsip inti di balik kecerdasan buatan modern. Dari konsep dasar hingga teknik optimasi tingkat lanjut.

01
Machine Learning vs. Deep Learning

Apa bedanya? Memahami Feature Extraction dan Representasi Data.

02
What Is a Neural Network

Anatomi Neuron, Hidden Layers, dan Forward Propagation.

03
Loss, Backprop, Optimization

Mekanisme belajar: Mencari kesalahan dan memperbaikinya.

04
How Training Works

Terminologi & Proses Pelatihan (Epoch, Batch, Iteration).

05
Performance Metrics

Rapor Kinerja AI: Confusion Matrix, Precision, Recall.

06
Overfitting & Regularization

Musuh Terbesar AI: "Menghafal" vs "Memahami".

Core Architectures
07
Why Do We Need Convolution?

Masalah Flattening, Ledakan Parameter, dan Spatial Invariance.

08
How Does a CNN Work?

Convolution Layers, Filters, Max Pooling, dan Arsitektur Final.

09
Sequences and Time

RNN untuk Data Berurutan, Vanishing Gradient, dan Solusi LSTM/GRU.

10
Autoencoders

Dimensionality Reduction, Denoising, dan Latent Space.

11
Transformers

Self-Attention, Parallelization, dan Era GPT.

Advanced Techniques
12
Normalization & Initialization

He Init, Xavier Init, dan Batch Normalization.

13
Data Augmentation

Memperkaya data Image, Text, dan Audio.

14
Advanced Optimization

Beyond SGD: Adam, RMSprop, dan Learning Rate Scheduling.

15
Explainability (XAI)

Membuka "Kotak Hitam" AI: Saliency Maps, SHAP, LIME.

Industrial Tools & Deployment
16
TensorFlow vs PyTorch

Perbandingan Dua Raksasa Framework: Industri vs Riset.

17
Google Colab Guide

Akses GPU Gratis, Magic Commands, dan Integrasi Drive.

18
Mixed Precision Training

FP16 vs FP32: Training 3x Lebih Cepat.

19
Transfer Learning

Memakai "Otak" Model Lain (ResNet, BERT).

20
Model Management

Saving (.h5/.pt), Versioning, dan ONNX.

21
Deployment & Serving

FastAPI, Docker, dan TFLite.

Course Completed!

Anda telah mempelajari seluruh 21 Modul Deep Learning. Selamat belajar!